

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 690 (2005) 3134-3141

www.elsevier.com/locate/jorganchem

New reactivity of Cp'_2NbH_3 , $Cp' = \eta^5 - C_5H_4SiMe_3$. Synthesis, electrosynthesis and reactivity of new carboxylato niobocene complexes

Antonio Antiñolo *,a, Santiago García-Yuste a, Isabel López-Solera a, Antonio Otero^{a,*}, Juan Carlos Pérez-Flores^a, Isabel del Hierro^b, Laurent Salvi^c, Hélène Cattey^c, Yves Mugnier^c

^a Departamento de Química Inorgánica, Orgánica y Bioquímica y Bioquímica, Facultad de Química, Universidad de Castilla-La Mancha,

13071 Ciudad Real, Spain

^b Departamento de Tecnología Química, Ambiental y de los Materiales, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles (Madrid), Spain $^\circ$ Laboratoire de Synthèse et Electrosynthèse Organométalliques, LSEO UMR 5188 Faculté des Sciences Mirande, 9 Allée Alain Savary, 21000 Dijon, France

> Received 25 January 2005; revised 5 April 2005; accepted 6 April 2005 Available online 23 May 2005

Abstract

A new family of niobium bidentate carboxylato-containing niobocene complexes, mononuclear $Cp'_2Nb(\kappa^2-O, \kappa^2)$ $O'-OOC(C_6H_5)$) (3), binuclear $[(Cp'_2Nb)_2(1,4-(\kappa^2-O,O'-OOC)_2(C_6H_4))]$ (4) and $[(Cp'_2Nb)_2(1,3-(\kappa^2-O,O'-OOC)_2(C_6H_4))]$ (5) and trinuclear $[(Cp'_2Nb)_3(1, 3, 5-(\kappa^2-O, O'-OOC)_3(C_6H_3))]$ (6), have been prepared by the reaction of Cp'_2NbH_3 (1) and the corresponding carboxylic acid, namely $(C_6H_5)COOH$, $(1,4-COOH)_2(C_6H_4)$, $(1,3-COOH)_2(C_6H_4)$ and $(1,3,5-COOH)_3(C_6H_3)$. Complexes 3, 4, 5 and 6 have been prepared by an alternative route involving a two-electron reduction of Cp'_2NbCl_2 (2) in the presence of the appropriate molar ratios of the corresponding carboxylic acids. Furthermore, the reaction of complexes 3, 4 and 6 with 2,6- $Me_2C_6H_3NC$ (xylylNC) in the molar ratios 1:1, 1:2 and 1:3, respectively, resulted in opening of the bidentate carboxylato ligand to give the monodentate carboxylato-containing complexes $[Cp'_2Nb(\kappa^1-O-OOC(C_6H_5))(xylylNC)]$ (7), $[(Cp'_2Nb(xylylNC))_2, (Cp'_2Nb(xylylNC))_2, (Cp'_$ $(1, 4-(\kappa^1-O-OOC)_2(C_6H_4))]$ (8) and $[(Cp'_2Nb(xylylNC))_3(1, 3, 5-(\kappa^1-O-OOC)_3(C_6H_3))]$ (9). Similarly, complex $[(Cp'_2Nb(\eta^1-C, \eta^1-C)_3(C_6H_3))]$ κ^1 -S-CS₂)₃(1,3,5-(κ^1 -O-OOC)₃(C₆H₃))] (10) was prepared by reaction of 6 with the appropriate amount of CS₂. Complexes 7, 8 and 9 can be prepared in an alternative way by reaction of $[Cp'_2Nb(H)(xylylNC)]$ with the corresponding carboxylic acids. The structures of all complexes have been established by spectroscopic techniques. In addition, the X-ray molecular structure of 4 was determined by a single-crystal X-ray diffraction study.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Niobocene; Carboxylato; Synthesis; Electrosynthesis

1. Introduction

In previous studies we have investigated the chemical behaviour of the trihydride complex Cp'_2NbH_3 (1) in

great depth. This complex constitutes an interesting example of a trihydride complex that exhibits the phenomenon of exchange coupling [1], with unusual $^{1}J(H,H)$ couplings that vary with temperature [2]. In the last 15 years we have focused our attention on the study of the reactivity of 1, e.g., with π -acid ligands to give different families of complexes $Cp'_2NbH(L)$, $L = \pi$ -acid ligand [3], in E-H (E = Si, Ge, H)

Corresponding author. Fax: +34 92 629 5318.

E-mail addresses: antonio.antinolo@uclm.es (A. Antiñolo), antonio.otero@uclm.es (A. Otero).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2005.04.003

activation processes [4] and with Lewis acids, such as $[M(PPh_3)][PF_6]$, M = Cu, Ag, Au to give a broad class of heterobimetallic species [5]. A few years ago, we prepared a formato niobocene complex $Cp'_2Nb(\kappa^2-O,$ O'-OOCH) by carbon dioxide insertion into the niobium-hydrogen bond of Cp₂NbH₃. The formato complex could also be obtained from the two-electron reduction of Cp'_2NbCl_2 in the presence of formic acid [6]. In addition, an acetato-containing complex, namely $Cp'_2Nb(\kappa^2-O,O'-OOCMe)$, was also chemically and electrochemically prepared [6]. Other authors have prepared O-bound carboxylato complexes by the insertion of carbon dioxide into M–C bonds [7]. More recently, electrochemical and spectroscopic studies on dicarboxylato-containing niobocene complexes were carried out [8]. As a continuation of our interest in the chemistry of Cp'_2NbH_3 , we report here its behaviour towards mono-, bi- and trinuclear aromatic carboxylic acids. These reactions led to the isolation of new carboxylato niobocene complexes, namely Cp'₂Nb $(\kappa^2 O, O' - OOCR), [(Cp'_2Nb)_2(\kappa^2 - O, O' - OOC)_2R], and$ $[(Cp'_2Nb)_3(\kappa^2-O, O'-OOC)_3R]$, which can also be formed from the reduction of Cp₂NbCl₂ in the presence of the appropriate carboxylic acid. Several aspects concerning the reactivity of these systems are also discussed.

2. Results and discussion

We are currently interested in studying the reactivity of Cp'NbH₃ towards different classes of carboxylic acids. With this aim in mind, four types of carboxylic acid, namely benzoic, $(C_6H_5)COOH$, terephthalic, $(1,4-COOH)_2(C_6H_4)$, isophthalic, $(1,3-COOH)_2(C_6H_4)$ and 1,3,5-phenyltricarboxylic, $(1,3,5-COOH)_3(C_6H_3)$, were selected. The standard reaction procedure involved heating at ca. 60 °C a stirred THF solution of **1** with the appropriate carboxylic acid. This method allowed the isolation of the carboxylato-containing complexes after an appropriate work-up procedure (Eqs. (1)–(3)).

$$Cp'_{2}NbH_{3} + HOOC(C_{6}H_{5}) \xrightarrow{\Delta} - 2 H_{2}$$

$$Cp'_{2}Nb \xrightarrow{MQ} C \xrightarrow{} C \xrightarrow{} 3$$
(1)

$$2 \operatorname{Cp'_2NbH_3} + (1, X-(HOOC)_2(C_6H_4)) \xrightarrow{\Delta}_{-4 H_2} (2)$$

$$Cp'_2Nb \xrightarrow{(1)}_{O}C \xrightarrow{O}_{O}C \xrightarrow{O}_{O}NbCp'_2 (2)$$

$$X=4.4 X=3.5$$

۸

$$3 \operatorname{Cp'_2NbH_3} + (1,3,5-(HOOC)_3(C_6H_3)) \xrightarrow{\Delta}_{-6 H_2}$$

$$Cp'_2Nb^{(1)} \xrightarrow{O}_{0} \xrightarrow{O}_{0} \xrightarrow{O}_{Nb}Cp'_2}$$
(3)

The different complexes were isolated as green air-sensitive solids. The evolution of H₂ was detected in all of the experiments. Complexes 4, 5 and 6 were isolated as the only carboxylato-containing species even when niobocene:carboxylic acid molar ratios lower than 2:1 or 3:1 were employed, indicating that the formation of either the corresponding binuclear or trinuclear species is thermodynamically favoured. The formation of those complexes could take place through the elimination of H₂ and the formation of a very reactive sixteen-electron monohydride niobocene species, which has previously been proposed in several cases [9]. All the complexes described in this work were spectroscopically characterized. The most prominent features in the IR spectra are the CO_2^- stretching frequencies of the carboxylato group and our attention was focused upon these. The usual approach in this respect has been to relate the \varDelta values (the separation between $v_{asym}(CO_2^-)$ and $v_{sym}(CO_2^-)$) with the mono- or bidentate character of the ligands [10]. The IR spectra of complexes 3, 4, 5 and 6 showed the v_{asym} (CO_2^-) and $v_{sym}(CO_2^-)$ absorptions to have \varDelta values of 95, 117, 121 and 74 cm⁻¹, respectively, which are consistent with the presence of a bidentate carboxylato ligand[10]. Moreover, the ¹H and ¹³C NMR data confirm the bidentate coordination. In fact, the observation of two and three signals for each cyclopentadienyl ring in the ¹H and ¹³C NMR spectra, respectively, (see Section 4) indicate the presence of a symmetrical environment.

In addition, the ¹³C NMR spectra contain signals for the carboxylato carbon atoms at δ 190.1, 205.5, 188.9 and 187.6 for complexes **3**, **4**, **5** and **6**, respectively. In order to confirm the proposed structural disposition for these complexes, the X-ray crystal molecular structure of **4** was determined. The molecular structure and atomic numbering scheme are shown in Fig. 1. Selected bond lengths and angles for **4** are given in Table 1.

The structure of **4** consists of a symmetric binuclear niobium complex. The metal atoms are bound to two cyclopentadienyl rings in a η^5 mode and to two oxygen atoms from the chelating carboxylato group. The sixmembered aromatic ring and the two carboxylato groups are coplanar, although the niobium atom is out of the plane defined by O1, O2, C1, C2, C3 and C4 (by 0.156(6) Å). The two oxygen atoms of the bidentate carboxylato ligand have similar Nb–O bond distances (2.220(4) and 2.230(4) Å for O1 and O2, respectively) and these values are in reasonable agreement with those

Fig. 1. Molecular structure and atom-labelling scheme for complex 4, with thermal ellipsoids at 30% probability.

Selected bond lengths (Å) and angles (°) for ${\bf 4}$	

Nb1–O1	2.220(4
Nb1–O2	2.230(4
O1C1	1.262(7
O2C1	1.261(7
C1–C2	1.501(8
O1-Nb1-O2	58.9(2)
C1-O1-Nb1	90.5(4)
C1-O2-Nb1	90.1(4)
O1C1O2	120.3(5)
O1C1C2	120.0(6)
O2-C1-C2	119.7(6)

reported for the carboxylato ligands [11]. The cyclopentadienyl groups are in a typical eclipsed fashion with respect to each other and the SiMe₃ groups are in a *trans* disposition.

Reactions of complexes **3**, **4** and **6** with 2,6-Me₂C₆H₃NC (xylylNC), in the appropriate molar ratios led to a change from a bidentate to a monodentate carboxylato unit due to coordination of the incoming ligand. These reactions led to the isolation of new complexes after the appropriate work-up procedure (Eqs. (4)–(6)).

$$Cp'_{2}Nb(\kappa^{2}-O, O'-OOC(C_{6}H_{5})) + xylylNC \rightarrow [Cp'_{2}Nb(\kappa^{1}-O-OOC(C_{6}H_{5}))(xylylNC)]$$
(4)

$$[(Cp'_{2}Nb)_{3}(1,3,5-(\kappa^{2}-O,O'-OOC)_{3}(C_{6}H_{3}))] + 3xylylNC \rightarrow [(Cp'_{2}Nb(xylylNC))_{3}(1,3,5-(\kappa^{1}-O-OOC)_{3}(C_{6}H_{3}))] (9) (6)$$

The same complexes can be prepared in an alternative way by reaction of the complex $[Cp'_2Nb(H)(xylylNC)]$ [3] with the appropriate molar ratios of the corresponding carboxylic acids. Finally, complex [Cp'₂Nb $((\eta^{1}-C, \kappa^{1}-S-CS_{2}))_{3}(1, 3, 5-(\kappa^{1}-O-OOC)_{3}(C_{6}H_{3}))]$ (10) was also prepared by the reaction of 6 with CS₂. The different monodentate carboxylato-niobocene complexes were isolated as either air-sensitive green (for 7, 8 and 9) or non-air-sensitive brown (for 10) solids. The different complexes were spectroscopically characterized. The IR spectra of complexes 7–10 show the $v_{asym}(CO_2^-)$ and $v_{\rm sym}(\rm CO_2^-)$ absorptions to have Δ values of 262, 245, 242 and 230 cm⁻¹, respectively, which are consistent with the presence of a bidentate carboxylato ligand [10]. In accordance with the lack of symmetry in the proposed structures (see Fig. 2), the ¹H and ¹³C NMR spectra of these complexes show four and five resonances for each cyclopentadienyl ring. The carbon resonances for the carboxylato ligands appear at δ 175.6, 174.2, 174.4 and 182.2, respectively, for 7-10. In addition, in these spectra the carbon resonances for the ancillary ligands, namely 2,6-Me₂C₆H₃NC and CS₂, appear at δ 208.2, 209.9, 212.5 and 250.2, respectively.

Fig. 2. (a) Proposed structure for complex 7. An analogous structural situation may be displayed for 8 and 9. (b) Analogous trinuclear disposition with an η^1 -C, κ^1 -S–CS₂ ancillary ligand proposed for complex 10.

2.1. Electrochemical studies

Electrochemical studies on Cp'_2NbCl_2 (2) in the presence of the appropriate carboxylic acids were carried out. Rotating disk electrode (RDE) voltammetry was performed on the complex in THF in the presence of $0.2 \text{ mol } L^{-1} \text{ NaBPh}_4$ as a supporting electrolyte. Complex 2 was found to exhibit a reduction wave A and an oxidation wave E' (Fig. 3(a)). Wave A corresponds to the one-electron reduction of **2** to give Cp'_2NbCl , as mentioned previously [12]. When the process was repeated in the presence of one equivalent of (C_6H_5) COOH the RDE voltammogram was unchanged; however, when the electrolysis was performed on a carbon gauze electrode at -1.50 V (versus an SCE electrode) corresponding to the plateau of wave A, a quantity of electricity close to two equivalent of electrons per mole of 2 was consumed. The RDE voltammogram of the resulting solution showed one well-defined oxidation wave F' at -0.510 V (Fig. 3(b)). This electrogenerated product corresponds to complex 3. The formation of this complex can be rationalized in terms of the following global reaction (Eq. (7)):

$$Cp'_{2}NbCl_{2} + HOOC(C_{6}H_{5}) + 2e^{-} \rightarrow [(Cp'_{2}Nb) \\ (\kappa^{2}\text{-}O, O'-OOC(C_{6}H_{5}))] + 1/2H_{2} + 2Cl^{-}$$
(7)

When one equivalent of (C_6H_5) COOH was added to a solution containing Cp'_2 NbCl (obtained from the oneelectron reduction of **2** in THF in the presence of 0.2 mol L⁻¹ NaBPh₄), a fast reaction occurred to give **3** and the regeneration of 50% of **2** (identified by its reduction wave *A* and by ESR spectroscopy). This result explains the consumption of 2 electrons in the electrolysis of **2** in the presence of one equivalent of the acid. These electrochemical results can be rationalized according to the processes represented in the Eqs. (8)–(10):

$$2Cp_2'NbCl_2 + 2e^- \rightarrow 2Cp_2'NbCl + 2Cl^-$$
(8)

$$Cp'_{2}NbCl + HOOC(C_{6}H_{5}) \xrightarrow{Cp'_{2}Nb} Cp'_{2}Nb \xrightarrow{Cl} + \frac{1}{2}H_{2} \qquad (9)$$

$$2Cp'_{2}NbCl + Cp'_{2}Nb \bigcirc Cl \\ \bigcirc Cp'_{2}NbCl_{2} + Cp'_{2}Nb \bigcirc C \longrightarrow$$
(10)

Cp₂'NbCl would react with the carboxylic acid to give a paramagnetic niobium(IV) complex, namely Cp₂'NbCl (κ^1 -O, O'-OOC(C₆H₅)), with elimination of H₂ (Eq. (9)). This intermediate would then be reduced by Cp₂'NbCl to give **3** and the regeneration of **2** (yield 50%, Eq. (10)). These results imply that reaction (10) should be markedly faster than reaction (9). In cyclic voltammetry studies, **3** exhibited an *F*/*F*' reversible system (Fig. 4), which can be described by the following reaction (Eq. (11)):

$$\begin{array}{ccc} Cp'_2Nb & & & & \\ & & & \\ & & & \\$$

However, under different experimental conditions (i.e., THF/NaBPh₄ or THF/Bu₄NPF₆), the electrooxidation process of **3** at the potential of the wave F' leads to partial regeneration of **2** according to the following process (Eq. (12)):

Even when the electrolysis of **3** was carried out a low temperature, the stabilization of **3'** was not possible. Finally, complexes **4**, **5**, and **6**, with dicarboxylic and tricarboxylic acids, were similarly electrogenerated from Cp'_2NbCl_2 (**2**) and the appropriate molar ratios of the carboxylic acids (see Table 2). In cyclic

Fig. 3. RDE voltammogram of (a, \blacktriangle) Cp₂'NbCl₂ 2 in THF containing 0.2 mol L⁻¹ of NaBPh₄; (b, \square) after adding one equivalent of benzoic acid and a 2 e⁻ reduction at -1.50 V on carbon electrode (scan rate: 20 mV s⁻¹).

Fig. 4. Cyclic voltammogram of 3 on carbon electrode in THF containing 0.2 mol L^{-1} of NaBPh₄ (scan rate: 100 mV s⁻¹; starting potential: -1 V).

Table 2 Half-wave potential of the F/F' system, obtained on carbon electrode (scan rate: 20 mV s⁻¹) in THF/NaBPh₄

Complex	$E_{1/2}$ (V)
4	-0.482
5	-0.479
6	-0.456

voltammetry experiments, these complexes also exhibit the reversible F/F' system at the potential values indicated in Table 2.

3. Conclusions

The interaction of Cp'_2NbH_3 with carboxylic acids was studied. The liberation of H_2 and the subsequent formation of new carboxylato-containing niobocenes, which were alternatively prepared by an electrochemical method, was observed. In addition, the reactivity of these complexes towards xylylNC and CS₂ was studied. It was found that a bidentate \rightarrow monodentate conversion of the coordination mode of the carboxylato ligand occurred.

4. Experimental

General procedures. All reactions were carried out using Schlenk techniques. Oxygen and water were excluded by the use of vacuum lines supplied with purified N₂. Toluene was distilled from sodium. Pentane was distilled from sodium/potassium alloy. Diethyl ether and THF were distilled from sodium benzophenone. All solvents were deoxygenated prior to use. Complexes $Cp'_2Nb(H)_3$ and $Cp'_2Nb(H)(CN(2, 6-Me_2C_6H_3))$ were prepared as described in the literature [2,3]. Deuterated solvents were dried over 4 Å molecular sieves and degassed prior to use. Carboxylic acids, namely $C_6H_5(COOH)$, [1,4-(HOOC)₂(C_6H_4)], [1,3-(HOOC)₂-(C_6H_4)], [1,3,5-(HOOC)₂(C_6H_3)], and carbon disulphide were used as purchased from Aldrich. NMR spectra were recorded on a Varian Unity 300 (300 MHz for ¹H, 75 MHz for ¹³C) spectrometer. Chemical shifts were measured relative to partially deuterated solvent peaks and are reported relative to TMS. IR spectra were recorded on a Perkin–Elmer 883 spectrometer in Nujol mulls over CsI windows.

4.1. Electrochemical experiments

All manipulations were performed using Schlenk techniques in an atmosphere of dry oxygen-free argon gas and using dry solvents. The supporting electrolyte was degassed under vacuum before use and then solubilized at a concentration of $0.2 \text{ mol } L^{-1}$. Voltammetric analyses were carried out in a standard three-electrode cell with a Princeton Applied Research, Model 263A. The reference electrode was a saturated calomel electrode (SCE) separated from the solution by a sintered glass disk. The auxiliary electrode was a platinum wire. For all voltammetric measurements, the working electrode was a vitreous carbon electrode ($\phi = 3 \text{ mm}$). A CTV101 Speed Control unit was used to adjust the rotation speed ($\bar{\omega} = 500 \text{ rpm}$) of the EDI101 electrode (Radiometer). In these conditions, when operating in THF, the formal potential for the ferrocene^{+/-} couple is found to be +0.56 V versus SCE. The controlled potential electrolysis was performed with an Amel 552 potentiostat coupled with an Amel 721 electronic integrator. High scale electrolyses were performed in a cell with three compartments separated with fritted glasses of medium porosity. A carbon gauze was used as the working electrode, a platinum plate as the counter-electrode and a saturated calomel electrode as the reference electrode.

4.2. Synthesis of $Cp'_2Nb(\kappa^2-O,O'-OOC(C_6H_5))$ (3)

A mixture of Cp'_2NbH_3 (1) (0.28 g; 0.75 mmol) and the carboxylic acid $C_6H_5(COOH)$ (0.15 g; 0.75 mmol) was stirred with dry THF (30 mL) at 50 °C for 5 h. The solution became dark green in colour and the solvent was evaporated to dryness under vacuum. The dark green oily residue was extracted with hexane (10 mL). The resulting solution was filtered and evaporated to dryness. Complex 3 was isolated as a dark green solid (90% yield): IR (Nujol/PET cm^{-1}) (vCOO_{asym}) 1634, (COO_{sym}^{-}) 1539. ¹H NMR (C_6D_6) : δ 0.06 (s, 18H, SiMe₃), 4.18, 5.69 (4H each a complex signal, $C_5H_4SiMe_3$), 6.87 (t, ${}^{3}J_{H-H} = 7.4$ Hz, 1H, H_p C_6H_5), 6.90 (t, ${}^{3}J_{H-H} = 7.5$ Hz, 2H, $H_mC_6H_5$), 7.78 (d, ${}^{3}J_{H-H}$ = 7.5 Hz, 2H, H_o C₆H₅). ¹³C{¹H}NMR (C₆D₆): δ 0.4 $(SiMe_3)$, 94.0 (C¹, C₅H₄SiMe₃), 104.3, 108.2 (C²⁻⁵, exact assignment not possible, $C_5H_4SiMe_3$), 127.0, 128.0, 132.7 (C_6H_5) , 190.1 (COO^-) . Anal. Calc. for C₂₃H₃₄NbSi₂O₂: C, 56.56; H, 6.35. Found: C, 56.11; H, 6.19%.

4.3. Synthesis of $[(Cp'_2Nb)_2(1,4-(\kappa^2-O,O'-OOC)_2(C_6-H_4))]$ (4), $[(Cp'_2Nb)_2(1,3-(\kappa^2-O,O'-OOC)_2(C_6H_4))]$ (5) and $[(Cp'_2Nb)_3(1,3,5-(\kappa^2-O,O'-OOC)_3(C_6H_3))]$ (6)

A mixture of Cp'_2NbH_3 (1) (0.28 g; 0.75 mmol) and the corresponding carboxylic acid [1,4-(HOOC)₂(C₆H₄)] (0.15 g; 0.75 mmol) was stirred with dry THF (30 mL) at 50 °C for 5 h. The solution became dark green in colour and the solvent was evaporated to dryness under vacuum. The dark green oily residue was extracted with hexane (10 mL). The resulting solution was filtered and evaporated to dryness. Complex **4** was isolated as a dark green solid (90% yield). Complexes **5** and **6** were prepared in a similar way.

4: IR (Nujol/PET cm⁻¹) $v(\text{COO}_{asym}^-)$ 1646, (COO_{sym}) 1529. ¹H NMR (CO(CD₃)₂): δ -0.03 (s, 36H, Si*Me*₃), 4.52, 5.83 (8 H each a complex signal, C₅H₄SiMe₃), 7.50 (s, 4H, H_oC₆H₄). ¹³C{¹H}NMR (CO(CD₃)₂): δ 0.4 (Si*Me*₃), 96.0 (C¹, C₅H₄SiMe₃), 105.1, 108.1 (C²⁻⁵, exact assignment not possible, C₅H₄SiMe₃), 128.7 and 135.9 (C₆H₄), 205.5 (COO⁻). Anal. Calc. for C₄₀H₆₂Nb₂Si₄O₄: C, 54.24; H, 5.65. Found: C, 53.97; H, 5.55%.

5: IR (Nujol/PET cm⁻¹) $v(\text{COO}_{asym}^{-})$ 1648, (COO_{sym}) 1527. ¹H NMR (C₆D₆): δ 0.00 (s, 36H, Si*Me*₃), 4.12, 5.62 (8 H each a complex signal, C₅H₄SiMe₃), 6.72 (t, ³J_{H-H} = 8.0 Hz, 1H, H_m C₆H₄), 7.70 (d, ³J_{H-H} = 7.7 Hz, 2H, H_oC₆H₄), 8.31 (s, 1H, H_oC₆H₄). ¹³C{¹H}NMR (C₆D₆): δ 0.4 (Si*Me*₃), 94.5 (C¹, C₅H₄), 104.6, 107.5 (C²⁻⁵, exact assignment not possible, C₅H₄SiMe₃), 127.0, 129.0, 132.2 and 132.5 (C₆H₄), 188.9 (COO⁻). Anal. Calc. for C₄₀H₆₂Nb₂Si₄O₄: C, 54.24; H, 5.65. Found: C, 54.04; H, 5.55%. **6:** IR (Nujol/PET cm⁻¹) $v(\text{COO}_{asym}^{-})$ 1605, (COO_{sym}) 1531. ¹H NMR (C₆D₆): δ -0.02 (s, 54H, Si*Me*₃), 4.06, 5.58 (12 H each a complex signal, C₅H₄SiMe₃), 8.40 (s, 3H, C₆H₃). ¹³C{¹H} NMR (C₆D₆): δ 0.3 (Si*Me*₃), 94.5 (C¹, C₅H₄), 104.7, 107.5 (C²⁻⁵, exact assignment not possible, C₅H₄SiMe₃), 132.2 and 132.5 (C₆H₃), 187.6 (COO⁻). Anal. Calc. for C₅₇H₁₀₀Nb₃O₆Si₆: C, 52.30; H, 6.19. Found: C, 52.12; H, 6.10%.

4.4. Synthesis of $[Cp'_2Nb(\kappa^1-O-OOC(C_6H_5))$ (xylylNC)] [(7)]

4.4.1. Method A

A mixture of $[Cp'_2Nb(H)(xylylNC)]$ (0.75 g; 2.25 mmol) and the carboxylic acid $C_6H_5(COOH)$ (0.27 g; 2.25 mmol) was stirred with dry THF (30 mL) at room temperature for 3 h. The solution became green in colour and the solvent was evaporated to dryness under vacuum. The green oily residue was extracted with hexane (10 mL). The resulting solution was filtered and evaporated to dryness. Complex 7 was isolated as a green solid (90% yield).

4.4.2. Method B

A mixture of $Cp'_2Nb(\kappa^2-O, O'-OOC(C_6H_5))$ (3) (0.13 g; 0.75 mmol) and $CN(2,6-Me_2C_6H_3)$ (0.06 g; 0.75mmol) was stirred with dry THF (30 mL) at room temperature for 3 h. The solution became green in colour and the solvent was evaporated to dryness under vacuum. The green oily residue was extracted with hexane (10 mL). The resulting solution was filtered and evaporated to dryness. Complex 7 was isolated as a green solid (82% yield): IR (Nujol/PET cm⁻¹) $v(C \equiv N)$ 2068, (COO_{asym}^{-}) 1712, (COO_{sym}^{-}) 1450. ¹H NMR (C_6D_6) : $\delta 0.02$ (s, 18H, SiMe₃), 2.35 (s, 6H, CN(2,6-Me₂C₆H₃)), 4.99, 5.19, 5.57, 5.86 (2 H each a complex signal, C₅H₄SiMe₃), 6.64 (s, 3H, CN(2,6-Me₂C₆H₃)), 7.00 (t, ${}^{3}J_{H-H} = 7.3$ Hz, 2H, H_m C₆H₅), 7.13 (t, ${}^{3}J_{H-H} = 7.3$ Hz, 1H, H_p C₆H₅) 8.14 (d, ${}^{3}J_{H-H} = 7$ Hz, 2H, $H_oC_6H_5$). ¹³C{¹H}NMR (C₆D₆): δ 0.1 (Si*Me*₃), 19.1 (CN(2,6- $Me_2C_6H_3$)), 93.9 (C¹, C_5H_4), 96.7, 101.1, 104.2, 109.6 (C^{2-5} , exact assignment not possible, C₅H₄SiMe₃), 126.5, 129.8, 130.3 and 130.7 (CN(2,6- $Me_2C_6H_3$)), 132.9, 133.1 and 135.3 (C_6H_5), 175.6 (COO^{-}) , 208.2 $(CN(2,6-Me_2C_6H_3))$. Anal. Calc. for C₃₂H₄₃NNb₂O₂Si₄: C, 62.04; H, 6.46; N, 2.26. Found: C, 61.89; H, 6.32; N, 2.32%.

4.5. Synthesis of $[[(Cp'_2Nb(xylylNC))_2(1,4-[(\kappa^1-O-OOC)_2(C_6H_4))](\mathbf{8})$

A mixture of $[(Cp'_2Nb)_2(1, 4-(\kappa^2-O, O'-OOC)_2(C_6H_4))]$ (4) (0.13 g; 0.75 mmol) and (CN(2,6-Me_2C_6H_3)) (0.19 g; 1.50 mmol) was stirred with dry THF (30 mL) at room temperature for 3 h. The solution became green in colour and the solvent was evaporated

to dryness under vacuum. The green oily residue was extracted with hexane (10 mL). The resulting solution was filtered and evaporated to dryness. Complex 8 was isolated as a green solid (82% yield): IR (Nujol/PET cm⁻¹) v(CN) 2062, (COO_{asym}^{-}) 1698, (COO_{sym}^{-}) 1453. ¹H NMR (CO(CD₃)₂): δ 0.12 (s, 36H, SiMe₃), 2.23 (s, 12H, CN(2,6-Me₂C₆H₃)), 5.21, 5.45, 5.55, 5.95 (4H, each a complex signal, C₅H₄SiMe₃), 6.80 (s, 6H, $CN(2,6-Me_2C_6H_3))$, 8.19 (s, 4H, C_6H_4). ¹³C{¹H}NMR $(CO(CD_3)_2)$: δ 0.3 $(SiMe_3)$, 19.2 $(CN(2,6-Me_2C_6H_3))$, 94.9, 97.2, 101.7, 110.3 (C^{2-5} , exact assignment not possible, C₅H₄SiMe₃), 104.7 (C¹, C₅H₄), 128.6, 128.7, 128.9 and 129.7 (C₆H₄), 127.2, 130.2, 133.4 and 138.9 $(CN(2,6-Me_2C_6H_3)), 174.2 (COO⁻), 209.9 (CN(2,6-$ Me₂C₆H₃)). Anal. Calc. for $C_{58}H_{80}N_2Nb_2O_4Si_4$: C, 60.00; H, 6.38; N, 2.69. Found: C, 59.56; H, 6.09; N, 2.41%.

4.6. Synthesis of $[(Cp'_2Nb(xylylNC))_3(1,3,5-(\kappa^1-O,-OOC)_3(C_6H_3))]$ (9)

A mixture of $[(Cp'_2Nb)_3(1, 3, 5-(\kappa^2-O, O'-OOC)_3)]$ $(C_6H_3))$] (6) (0.16 g; 0.75 mmol) and $CN(2,6-Me_2C_6H_3)$ (0.29 g; 2.25 mmol) was stirred with dry THF (30 mL) at room temperature for 3 h. The solution became green in colour and the solvent was evaporated to dryness under vacuum. The green oily residue was extracted with hexane (10 mL). The resulting solution was filtered and evaporated to dryness. Complex 9 was isolated as a green solid (87% yield): IR (Nujol/PET cm⁻¹) $v(C \equiv N)$ 2046, (COO_{asym}) 1629, (COO_{sym}) 1387. ¹H NMR (C_6D_6) : δ 0.10 (s, 54H, SiMe₃), 2.43 (s, 18H, CN(2,6-Me₂C₆H₃)), 5.05, 5.21, 5.51, 5.73 (6H, each a complex signal, $C_5H_4SiMe_3$), 6.80 (m, 9H, $CN(2,6-Me_2C_6H_3)$), 8.82 (s, 3H, C₆ H_3). ¹³C{¹H} NMR (C₆D₆): δ 0.3 (SiMe₃), 19.4 (CN(2,6-Me₂C₆H₃)), 93.9, 96.6, 100.8, 109.9 (C^{2-5} , exact assignment not possible, $C_5H_4SiMe_3$), 104.6 (C¹, C₅H₄), 127.5 and 129.2 (C₆H₃), 133.1, 133.6 and 137.3 (CN(2,6-Me₂C₆H₃)), 174.4 (COO⁻), 212.5 (CN(2,6-Me₂C₆H₃)). Anal. Calc. for C₈₄H₁₂₇N₃Nb₃O₆-Si₆: C, 59.25; H, 6.35; N, 2.82. Found: C, 59.43; H, 6.55; N, 2.71%.

4.7. Synthesis of $[(Cp'_2Nb(\eta^1-C,\kappa^1-S-CS_2))_3(1,3,5-(\kappa^1-O-OOC)_3(C_6H_3))]$ (10)

A mixture of $[(Nb(\eta^5-C_5H_4SiMe_3)_2)_3(1,3,5-(\kappa^2-O,O-OOC)_3(C_6H_3))]$ (6) (0.16 g; 0.75 mmol) and an equimolecular quantity of CS₂ (0.14 mL; 2.25 mmol) was stirred with dry THF (30 mL) at room temperature for 3 h. The solution became green in colour and the solvent was evaporated to dryness under vacuum. The green oily residue was extracted with hexane (10 mL). The resulting solution was filtered and evaporated to dryness. Complex **10** was isolated as a brown solid (70% yield): IR (Nujol/PET cm⁻¹) ν (COO_{asym}) 1638, (COO_{sym}) 1408, (C=S) 1151. ¹H NMR (C₆D₆): 0.06 (s, 54H, Si*Me*₃), 5.91, 6.20, 6.28, 6.44 (6 H each a complex signal, C₅H₄SiMe₃), 8.83 (s, 3H, C₆H₃). ¹³C{¹H}NMR (C₆D₆): δ 0.2 (Si*Me*₃), 94.5 (C¹, C₅H₄), 102.3, 104.7, 106.8, 107.5 (C²⁻⁵, exact assignment not possible, C₅H₄SiMe₃), 134.0 (C₆H₃), 136.9 (C₆H₅), 182.2 (COO⁻), 250.2 (CS₂). Anal. Calc. for C₆₀H₁₀₀Nb₃O₆S₆. Si₆: C, 48.00; H, 1.93. Found: C, 48.43; H, 2.10%.

4.8. X-ray Structure determination for compound 4

Intensity data for compound 4 were collected on a NONIUS-MACH3 diffractometer equipped with a graphite monochromator (Mo K α radiation, $\lambda = 0.71073$ Å) using an $\omega/2\theta$ scan technique. The final unit cell parameters were determined from 25 well-centered reflections and refined by least-squares method. Absorption correction was made. The crystal data and details of the data collection and structure analysis are summarized in Table 3.

The structure was solved by direct methods using SHELXS computer program [13] and refined on F^2 by full-matrix least-squares (SHELXL-97) [14]. All non-hydrogen atoms were refined with anisotropic thermal parameters for all compounds. The hydrogen atoms were included in calculated positions and were refined with an overall isotropic temperature factor using a riding model. Weights were optimized in the final cycles.

Tał	ole	3							
\sim							~		

Formula	C40H56Nb2O4Si4					
$F_{ m w}$	889.03					
$T(\mathbf{K})$	200(2)					
Crystal system	Triclinic					
Space group	$P\overline{1}$					
Unit cell dimensions						
a (Å)	7.470(1)					
b (Å)	10.763(1)					
c (Å)	14.456(1)					
α (°)	103.33(1)					
β (°)	96.92(1)					
γ (°)	91.48(1)					
$V(Å^3)$	1121.0(2)					
Ζ	1					
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.332					
$\mu (\mathrm{mm}^{-1})$	0.653					
<i>F</i> (000)	466					
Crystal dimensions (mm)	$0.2 \times 0.2 \times 0.3$					
θ Range (°)	2.14 to 28.11					
Index ranges	$-9 \leq h \leq 9, -14 \leq k \leq 13$					
	$0 \leq l \leq 19$					
Number of reflections measured	5611					
Number of independent reflections	5401					
Number of observed reflections	3071					
Goodness-of-fit on F^2	0.987					
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0649, wR_2 = 0.1287$					
Largest difference peak and hole (e $Å^{-3}$)	0.761/-0.765					

 $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \ wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2]]^{0.5}.$

C16 and C17 are in disordered positions (0.54 and 0.63 population, respectively).

Crystallographic data for the structural analysis of **4** have been deposited with the Cambridge Crystallographic Data Centre, CCDC Number 256606. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336033; e-mail: deposit@ccdc. cam.ac.uk or http://www.ccdc.cam.ac.uk).

Acknowledgements

We gratefully acknowledge financial support from the Dirección General de Investigación Científica, Spain (MEC, Grant No. BQU2002-04638-CO2-02) and the Junta de Comunidades de Castilla-La Mancha (Grant Nos, PAC-02-003, GC-02-010 and PAI-02-016).

References

- A. Antiñolo, F. Carrillo-Hermosilla, B. Chaudret, M. Fajardo, J. Fernandez-Baeza, M. Lanfranchi, H.-H. Limbach, M. Maurer, A. Otero, M.A. Pellinghelli, Inorg. Chem. 35 (1996) 7873.
- [2] A. Antiñolo, B. Chaudret, G. Commenges, M. Fajardo, F. Jalon, R.H. Morris, A. Otero, C.T. Schweltzer, J. Chem. Soc., Chem. Commun. (1988) 1210.
- [3] A. Antinolo, F. Carrillo-Hermosilla, M. Fajardo, S. Garcia-Yuste, A. Otero, S. Camanyes, F. Maseras, M. Moreno, A. Lledos, J.M. Lluch, J. Am. Chem. Soc. 119 (1997) 6107.

- [4] A. Antinolo, F. Carrillo-Hermosilla, A. Castel, M. Fajardo, J. Fernandez-Baeza, M. Lanfranchi, A. Otero, M.A. Pellinghelli, G. Rima, J. Satge, E. Villasenor, Organometallics 17 (1998) 1523.
- [5] A. Antinolo, F. Carrillo-Hermosilla, B. Chaudret, M. Fajardo, S. Garcia-Yuste, F.J. Lahoz, M. Lanfranchi, J.A. Lopez, A. Otero, M.A. Pellinghelli, Organometallics 14 (1995) 1297.
- [6] A. Antinolo, M. Fajardo, S. Garcia-Yuste, I. del Hierro, A. Otero, S. Elrami, Y. Mourad, Y. Mugnier, J. Chem. Soc., Dalton Trans. (1995) 3409.
- [7] (a) D.J. Darensbourg, M. Pala, J. Am. Chem. Soc. 107 (1985) 5687;
 (b) D.J. Darensbourg, R.K. Hanckel, C.G. Bauch, M. Pala, D. Simmons, J.N. White, J. Am. Chem. Soc. 107 (1985) 7463;
 (c) D.J. Darensbourg, H.P. Wiegreffe, P.H. Wiegreffe, J. Am. Chem. Soc. 112 (1990) 9252;
- (d) B.P. Sullivan, T.J. Meyer, Organometallics 5 (1986) 1500.
- [8] D. Lucas, T.Z. Modarres, Y. Mugnier, A. Antinolo, A. Otero, M. Fajardo, J. Organomet. Chem. 629 (2001) 54.
- [9] A. Antinolo, F. Carrillo-Hermosilla, M. Fajardo, S. Garcia-Yuste, A. Otero, J. Organomet. Chem. 482 (1994) 93.
- [10] G.B. Deacon, R.J. Phillips, Coord. Chem. Rev. 33 (1980) 227.
- [11] A.A. Pasynskii, Y.V. Skiripkin, I.L. Emerenko, V.T. Kalinnikov, G.G. Aleksandrov, Y.T. Struchkov, J. Organomet. Chem. 165 (1979) 39.
- [12] (a) H. Nabaoui, A. Fakhr, Y. Mugnier, A. Antinolo, M. Fajardo, A. Otero, P. Royo, J. Organomet. Chem. 338 (1988) C17–C20;
 (b) D. Lucas, Y. Mugnier, A. Antinolo, A. Otero, M. Fajardo,
 - J. Organomet. Chem. 435 (1992) C3–C7.
- [13] G.M. Sheldrick, Acta Crystallogr., Sect. A 46 (1990) 467.
- [14] G.M. Sheldrick, Program for the Refinement of Crystal Structures from Diffraction Data, University of Göttingen, Göttingen, Germany, 1997.